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ABSTRACT
Sequential recommendation approaches predict the next items (tar-
gets) by analyzing prefix subsequences. These methods primar-
ily model the correlations between prefixes and targets but often
neglect the inherent correlations among prefixes and items. In
this paper, we propose a Prefix-Target Graph-based Sequential
Recommendation Approach (PTSR), which constructs a prefix-
target graph (PTG) to collect observed correlations among prefixes
and targets. It utilizes a graph neural network to model these in-
herent correlations, thus improving the item representations used
in the predictive model. Specifically, prefixes linked to the same
target reflect similar intents, while targets linked to the same prefix
indicate available choices. This allows the graph neural network
to effectively capture high-level correlations among prefixes and
items, enhancing recommendation accuracy. We conduct exten-
sive experiments on four real-world datasets to demonstrate the
superiority of PTSR compared to state-of-the-art (SOTA) sequential
recommendation methods. The source code of the PTSR is available
at https://github.com/TosakRin/PTSR.
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1 INTRODUCTION
Sequential recommendation (SR) is a significant branch within the
field of recommender systems. It predicts the next possible item
a user might be interested in by analyzing the user behavior his-
tory. Different from the traditional collaborative filtering methods
that rely solely on observing matrices, sequential recommendation
approaches incorporate temporal information, where the overall
sequences reflect user preferences and the latest subsequences in-
dicate the short-term intents. This provides a more precise under-
standing of the user’s current behavioral intentions, thus offering
more accurate and personalized recommendations.

Sequential recommendation approaches treat the observed user
interaction sequence as a combination of known prefix subsequence
(prefix) and unknown next item (target), aiming to predict the target
corresponding to the prefix. Some approaches employ sequence
models, e.g., RNN or Transformer [38], to generate the user in-
tent through the prefix. SASRec [16] and BERT4Rec [33] utilize
self-attention mechanisms to weight each item in the prefix se-
quence, better capturing the evolution of user interests and making
the model more attentive to items that significantly impact the
prediction of the target item. Some other approaches exploit the
representation of the target item, incorporating multimodal rep-
resentations of items. For instance, MMSR [15] explores effective
feature fusion of different modalities, providing additional contex-
tual information and cross-modal complementary features for the
item.

Recent approaches note that the core of sequential recommenda-
tion lies in two inherent correlations among the prefixes and targets,
as illustrated in Figure 1(a). Prefix-prefix correlations between two
prefixes with the same target reflect they have closely correlated
user intents. DuoRec [29] and ICSRec [28] devise contrastive learn-
ing over the prefix-prefix correlations to differentiate the user intent
at a fine-grained level. Target-target correlations between two tar-
gets with the same prefix reveal two available choices for the same
user intent. IHGCN [44] builds an item adjacency matrix to present
the target-target correlations. Although these methods realize the
significance of the correlations, they lack an effective mechanism
to incorporate both correlations concurrently.

To address this issue, we propose a Prefix-Target Graph-based
Sequential Recommendation Approach (PTSR), which incorporates
the two inherent correlations concurrently to improve the sequen-
tial recommendation. Specifically, PTSR constructs a prefix-target
graph (PTG), where the nodes indicate the prefixes and items, and
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Figure 1: (a) An example of two latent relationships between prefix sequences and target items. The red block describes
the prefix-prefix correlation that different prefix sequences are linked to the same target item. The purple part denotes the
target-target correlation that different target items have the same prefix sequence. (b) The Prefix-Target Graph (PTG) with
the connections of the natural prefix-target transitions. The inherent target-target and prefix-prefix correlations are two-hop
correlations in this Prefix-Target Graph.

the edges indicate the prefix-target transition existing in the ob-
servation history. As shown in Figure 1(b), with just one-stage
message propagation along the PTG, PTSR can incorporate the
inherent prefix-prefix and target-target correlations into represen-
tation learning. Therefore, PTSR applies a graph neural network
(GNN) over PTG to enhance the original item representations, thus
improving the results of sequential recommendations. We conduct
extensive experiments on four datasets. The results demonstrate
the effectiveness of PTG.

To summarize, our work makes the following contributions:

• We propose a novel prefix-target graph-based sequential model,
PTSR, which effectively captures the transition correlations be-
tween prefixes and targets to enhance the representations of
items in sequential recommendations.
• We introduce the method for constructing a Prefix-Target graph
and fully explore the impact of the inherent prefix-prefix and
target-target correlations.
• We conduct extensive experiments on four real-world datasets,
demonstrating that PTSR outperforms state-of-the-art sequential
recommendation approaches.

2 RELATEDWORK
2.1 Sequential Recommendation
Sequential recommendation captures the user intents by analyzing
their ordered interaction sequences [30]. The core lies in predicting
the next item a user will likely interact with based on their past
interaction history.

The canonical methods for sequential recommendation are dedi-
cated to modeling the sequential patterns in user-item interactions.
For example, FPMC [32] uses Markov chain models [10, 27] to
capture the sequential patterns in user sequences. GRU4Rec [13]
and Caser [36] apply recurrent neural networks (RNN) and convo-
lutional neural networks (CNN) to model the sequential interac-
tions. The Transformer [38] and attention mechanisms have been
introduced into the sequential recommendation [21] to capture

the complex short and long-term dependencies in user sequences.
SASRec [16], BERT4Rec [33], and SSE-PT [41] are representative
models that leverage the self-attention mechanism to capture the
temporal dependencies between user interactions with items, which
weight each item in the prefix sequence to model the user’s interest
evolution process better.

Although numerous users and items exist on platforms, most
users/items are only associated with a few interactions, resulting in
poor generalization and prediction capabilities. While early works
can not solve the sparsity problem in user-item interactions, recent
methods [22] have attempted to address this issue by leveraging
self-supervised learning techniques, such as contrastive learning [8].
CL4SRec [43] is the first to introduce contrastive learning to the
sequential recommendation, using crop, mask, and shuffle oper-
ations to augment the input sequence and maximize the mutual
information between positive and negative samples. S3-Rec [46]
uses four sub-task objectives to learn the representations of items
and apply InfoNCE [26] loss to realize maximum mutual infor-
mation. CoSeRec [23] introduces additional substitute and insert
enhancement methods based on CL4SRec. DuoRec [29] abandons
traditional data augmentation methods that would corrupt the origi-
nal sequence and it utilizes the randomness of dropout in the model
to form different views for unsupervised contrastive learning.

The above methods mainly focus on item-level transitions in user
sequences, which can be considered item-aware methods. More
recently, the viewpoint that the user intent is more important than
just the item itself in sequential recommendation has received
increasing attention [2]. Many intent-aware methods propose to
capture the user’s intention transition in the sequence. DSSRec [24]
proposes a seq2seq model and introduces a variable representing
user intent. ICLRec [3] builds the intent prototype by clustering the
user’s historical behavior sequence representations. IOCRec [20]
disentangles the latent intents from the user behavior sequence
and uses the intent to guide the item representation learning. IC-
SRec [28] extracts subsequences as multiple intents from the user
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behavior sequence and constructs positive pairs based on the target
item of the user’s subsequences.

Although these models have attempted to better capture user
intention transitions by modeling the relationships between prefix
sequences and target items, they still overlook the higher-order
relationships between target items and prefix sequences, which
may provide more comprehensive information for capturing user
intention transitions.

2.2 Graph-based Recommendation
Most of the information in recommendation systems essentially
has a graph structure, which aligns well with the strengths of
graph neural networks (GNNs) [18] in graph representation learn-
ing. From the perspective of graph structure, different data types
can be modeled using a unified framework. By transmitting infor-
mation through multi-layer networks, GNN can explicitly encode
higher-order signals in user interaction behavior. Consequently,
GNN-based methods have been widely used in the recommendation
system to model user-item interactions and item-item relationships.
NGCF [39] initially brought the GNNmethod into recommendation
systems, which can capture the collaborative filtering signal and the
graph structure signal simultaneously. LightGCN [11] simplifies the
NGCF model and removes the feature transformation layer, achiev-
ing better performance with fewer parameters. PinSage [45] uses a
graph convolutional network (GCN) to learn the representation of
items in a heterogeneous graph and generates item embeddings by
aggregating the embeddings of neighboring items. GraphSAGE [6]
proposes a sampling strategy to learn the representation of nodes
in the graph, which can be applied to large-scale graphs.

Building on experiences in the general recommendation, graph-
based methods have also been applied to sequential recommenda-
tions to model the complex relationships between user sequences
and items. The SR-GNN [42] introduces graph-based structures
to model session sequences by representing sessions as directed
graphs. GCE-GNN [40] leverages contrastive learning within a
GNN framework to enhance node representation learning by maxi-
mizing agreement between different augmented views of the same
graph. SURGE [1] models user-item interactions and item-item re-
lationships in a unified graph structure, generating and leveraging
augmented graph views to learn robust node representations with-
out requiring labeled data. IHGCN [44] applies GCN to capture the
similarity of items that share the same prefix sequence, enriching
the representations of items through GCN layers.

Although these methods have proposed various graph-building
strategies, they still use graphs to build item-level relationships
rather than intent-level relationships, struggling to capture the
user’s intent in the recommendation process.

3 METHOD
This section formally defines the sequential recommendation task
and introduces the proposed PTSR. We first extract subsequences
from the original user sequences to build prefix sequences and target
item pairs. Next, we construct the Prefix-Target Graph (PTG) to
capture distinctive representations of items with GNN aggregating
the transition and correlation information between pairs. Given
the enhanced item representations, we predict the next item by a

self-attention recommender. The overall architecture of the PTSR
is illustrated in Figure 2.

3.1 Problem Formulation
For the sequential recommendation, letU = {𝑢1, 𝑢2, . . . , 𝑢 |U | } and
I = {𝑖1, 𝑖2, . . . , 𝑖 | I | } denote the set of users and items, respectively,
where |U| and |I | is the number of unique users and items.

For each user 𝑢 ∈ U, there’s an interaction history sequence
𝑠𝑢 = [𝑖𝑢1 , 𝑖

𝑢
2 , . . . , 𝑖

𝑢
𝑇
] arranged chronologically, where 𝑇 denotes the

length of that sequence. Each 𝑖𝑢𝑛 ∈ I, 0 ≤ 𝑛 ≤ 𝑇 in the interaction
history refers to the item that 𝑢 interacted with at time step 𝑛.

Based on the preferences implied by item transitions in users’ be-
havior history, the sequential recommendation aims to forecast the
next item for a given user interaction sequence 𝑠𝑢 . Mathematically,
the next-item prediction can be formulated as:

𝑖 = argmax
𝑖∈I

𝑝 (𝑖 |𝑠𝑢 ), (1)

where 𝑖 is the item predicted after observing 𝑠𝑢 , and 𝑝 (𝑖 |𝑠𝑢 ) is the
probability of item 𝑖 as the next interaction closely following 𝑠𝑢 .

3.2 Prefix-Target Graph Construction
The prefix sequences and target items within sequences can offer
abundant transition and correlation information. The direct prefix-
target connections suggest temporal transitions between prefix
sequences and target items, while the high-order connections about
prefixes pointing to an identical target and targets sharing the same
prefix imply the correlation between them. We construct the Prefix-
Target Graph (PTG) To build these relationships concurrently.

3.2.1 Prefix-Target Pair Extraction. Initially, we extract subse-
quences from all original user sequences to leverage the intrinsic
relationships between prefix sequences and target items. Building
on prior research [28, 35], we split the complete user sequence into
multiple subsequences using a dynamic sliding operation. For each
user behavior sequence 𝑠𝑢 = [𝑖𝑢1 , 𝑖

𝑢
2 , . . . , 𝑖

𝑢
𝑇
], the dynamic sliding

window begins by setting its start index 𝐼𝑠 = 0. It incrementally
moves the end index 𝐼𝑒 from a minimal subsequence length 𝑙𝑚𝑖𝑛 .
This process continues until the end index 𝐼𝑒 either reaches the
max length of the complete sequence𝑇 or the predefined maximum
length 𝑙𝑚𝑎𝑥 . If the end index 𝐼𝑒 has already increased to 𝑙𝑚𝑎𝑥 but still
hasn’t yet reached the tail of the complete sequence, the window
starts sliding step-by-step, with 𝐼𝑠 and 𝐼𝑒 incrementing by one each
time, maintaining the window length at 𝑇 . The process is repeated
until the end of the sequence. All subsequences encompassed by
the window during the dynamic sliding are collected, forming the
subsequence set S𝑢 = {𝑠𝑢1 , 𝑠

𝑢
2 , . . . , 𝑠

𝑢
𝑘
} belonging to 𝑢, where 𝑘 is

the total number of subsequences for 𝑠𝑢 . All subsequences from
every user are denoted as the subsequence set S =

⋃
𝑢∈US𝑢 . This

extraction secures our ability to capture various levels of user in-
tents and transitions within the interaction history, providing a
more comprehensive representation of user behavior patterns.

To build the pair of a target item with corresponding prefix
sequence for any given subsequence 𝑠 = [𝑖1, 𝑖2, . . . , 𝑖 |𝑠 | ] in the PTG
construction and also the recommendation training, we use the
last item of the subsequence as the target item and the remaining
items before the last one as the prefix sequence, which is formally

 

241



CIKM ’24, October 21–25, 2024, Boise, ID, USA Jiayu Chen, Xiaoyu Du, Yonghua Pan, and Jinhui Tang

𝑖2𝑖2 𝑖1

R
eco

m
m
en
d
er

𝐄 Ƹ𝒊𝑇

Prefix Target

𝑝1

𝑝2

𝑝3

A. Prefix-Target Graph Construction

𝐞𝑖2

Ϝ( )

𝐞𝑝2

𝐄
𝐦
𝐛
𝐞
𝐝
𝐝
𝐢𝐧
𝐠

𝐋
𝐚
𝐲
𝐞
𝐫

𝑖2𝑖1

𝑖1𝑖1 𝑖2 𝑖2

𝑖2

𝑝2𝑝1

ℱ𝑟𝑒𝑐

𝐞𝑖1

𝑖3

𝐞𝑝3

𝐞𝑖3

𝐆𝐍𝐍

×L

𝐈𝐧𝐢𝐭𝐢𝐚𝐥 𝐈𝐭𝐞𝐦 𝐄𝐦𝐛

𝐈𝐧𝐢𝐭𝐢𝐚𝐥 𝐏𝐫𝐞𝐟𝐢𝐱 𝐄𝐦𝐛

𝐄𝑝2

𝐄𝑖1

𝐄𝑝3

𝐄𝑖3

𝐄𝐧𝐡𝐚𝐧𝐜𝐞𝐝 𝐈𝐭𝐞𝐦 𝐄𝐦𝐛

𝐄𝐧𝐡𝐚𝐧𝐜𝐞𝐝 𝐏𝐫𝐞𝐟𝐢𝐱Emb

𝐄𝑖2

𝐈𝐧𝐩𝐮𝐭 𝐏𝐫𝐞𝐟𝐢𝐱 𝐒𝐞𝐪𝐮𝐞𝐧𝐜𝐞

𝐒𝒑

Aggregation & Propagation

𝐒𝐮𝐩𝐞𝐫𝐯𝐢𝐬𝐞𝐝 𝐓𝐚𝐫𝐠𝐞𝐭

𝐄𝑻 ℒ𝑟𝑒𝑐Ϝ( )

B. Graph-based Representation Enhancement C. Training & Prediction

PTG

𝑝3

𝑖1

𝑝2

𝑝3

𝑖1

𝑖2

𝑖3

𝑖1 𝑖2

𝑖2 𝑖1 𝑖3

𝐞𝑖1

𝐞𝑖2

𝐞𝑖1
𝐞𝑖3

𝐞𝑖2

𝑝2
𝑖1 𝑖2

Prefix Target

…
𝐔𝐬𝐞𝐫

Sequence

𝐈𝐧𝐢𝐭𝐢𝐚𝐥 𝐏𝐫𝐞𝐟𝐢𝐱 𝐈𝐃

𝐈𝐧𝐢𝐭𝐢𝐚𝐥 𝐈𝐭𝐞𝐦 𝐈𝐃

𝑆1

𝑆2

𝑆3

𝑆4

Figure 2: Overview of PTSR. (A) The construction of Prefix-Target Graph (PTG) from the user sequences with paired prefixes
and targets. (B) The representation enhancement with the inherent Prefix-Prefix and Target-Target correlations by employing
GNN over PTG. (C) Sequential Recommendation with the enhanced representations.

denoted as:
Prefix: 𝑝 = [𝑖1, 𝑖2, . . . , 𝑖 |𝑠 |−1],
Target: 𝑡 = 𝑖 |𝑠 | .

(2)

To construct the global PTG containing all correlations between
prefix sequences and target items, we collect prefix sequences and
target items from all users’ subsequences. It eventually forms a set
of prefix-target pairs, denoted as:

D = {(𝑝, 𝑡) |𝑠 ∈ S}. (3)

3.2.2 Prefix-Target Graph Construction. When two prefix se-
quences have the same target item, the user intent described by the
sequence is correlated. Similarly, when the same sequence points
to two different targets, both targets are feasible options. Having
prefix-target pairs, we arrange them into a graph form to enable the
later algorithm to use the relationship conveniently. Specifically, to
capture these transition relationships between prefix sequences and
target items, as well as prefix-prefix and target-target correlations,
we construct the PTG.

We first create a graph structure whose nodes represent prefix
sequences and target items, and edges represent relationships be-
tween prefixes and their corresponding targets. Iterating through
the set of prefix sequences and target item pairs D, we add nodes
for each unique prefix sequence and target item to the graph. We
form the graph’s edges by connecting each prefix sequence node
to its corresponding target item node.

Formally, the PTG can be represented as an undirected graph
G = (V, E,A), where V is the set of nodes representing prefix

sequences and target items, E is the set of edges connecting each
prefix sequence node to its corresponding target item node. The
adjacency matrix A represents the connections between nodes
in the graph. Specifically, A is a sparse matrix with dimensions
|V| × |V|, where A𝑖 𝑗 = 1 if there is an edge between nodes 𝑖
and 𝑗 , and A𝑖 𝑗 = 0 otherwise. The complete Prefix-Target Pair
Extraction and Prefix-Target Graph Construction procedure are
shown in Algorithm 1.

The PTG using graph-based data organization allows us to eas-
ily model transition and correlation information. Intuitively, the
one-hop neighbors are the corresponding prefix sequences for each
target item node 𝑡 ∈ V . In the same way, the one-hop neighbors of
a prefix sequence node 𝑝 ∈ V are the target item connected to it.
The one-hop neighbors capture the immediate transition between
prefix sequences and target items. By exploiting the one-hop neigh-
bor, we can learn about the transition relationship. In contrast, the
two-hop neighbors of the target item point to target items with
the same prefix sequence, and the two-hop neighbors of the prefix
sequence turn back to the prefix sequences with the same target
item. Based on this higher-order signal correlation, collecting the
two-hop neighbor information allows us to learn the collaborative
correlation between similar target items and prefix sequences. By
incorporating the one-hop and two-hop neighbor information, we
can integrate the relationship of the Prefix-Target transition and
build a connection between the prefix-prefix relation and target-
target correlation in the graph simultaneously. Moreover, we can
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Algorithm 1 Prefix-Target Graph Construction

Require: Set of usersU, Set of itemsI, User interaction sequences
{𝑠𝑢 |𝑢 ∈ U}, Minimum subsequence length 𝑙𝑚𝑖𝑛 , Maximum
subsequence length 𝑙𝑚𝑎𝑥

Ensure: Prefix-Target Graph G = (V, E,A)
1: D ← ∅
2: for each user 𝑢 ∈ U do
3: 𝑠𝑢 ← interaction sequence of user 𝑢
4: for 𝐼𝑠 ← 0 to 𝑇 − 1 do
5: for 𝐼𝑒 ← 𝐼𝑠 + 𝑙𝑚𝑖𝑛 to min(𝐼𝑠 + 𝑙𝑚𝑎𝑥 ,𝑇 ) do
6: 𝑝 ← [𝑖𝑢

𝐼𝑠
, . . . , 𝑖𝑢

𝐼𝑒−2]
7: 𝑡 ← 𝑖𝑢

𝐼𝑒−1
8: D ← D ∪ {(𝑝, 𝑡)}
9: end for
10: end for
11: end for
12: V ← {𝑣 | (𝑝, 𝑡) ∈ D, 𝑣 ∈ {𝑝, 𝑡}}
13: E ← D
14: A← 0 |V |× |V |
15: for each (𝑝, 𝑡) ∈ E do
16: A[𝑝, 𝑡] ← 1
17: A[𝑡, 𝑝] ← 1
18: end for
19: return G = (V, E,A)

further extend the neighbor to 𝑘-hop to capture more high-order in-
teractions between nodes by leveraging the interaction path implied
by adjacency matrix A.

3.3 Graph-based Representation Enhancement
With the PTG available, we can use GNN to integrate the transi-
tion and correlation relationships between target items and prefix
sequences into their representation.

3.3.1 Node Representation. In the PTG, each node is repre-
sented by a dense vector, which is the embedding of the target item
or prefix sequence. We embed all the items in the dataset into a
low-dimensional space using an embedding layer. The embedding
of item 𝑖 can be denoted as e𝑖 ∈ R𝑑 . Since prefix sequences are
lists of items, we can fully utilize the inner relationship between
them. We directly represent a prefix sequence by aggregating the
representation of items within it.

Specifically, we treat all the items in a prefix sequence equally
and use the average pooling operation to aggregate all the items
from the prefix sequence into a single embedding vector. Formally,
the embedding of prefix sequence 𝑝 can be expressed as:

e𝑝 =
1
|𝑝 |

∑︁
𝑖∈𝑝

e𝑖 , (4)

where e𝑖 represents the embedding of item 𝑖 , and |𝑝 | denotes the
length of the prefix sequence 𝑝 .

3.3.2 GNN Layer. The above process combines all the dataset’s
prefix sequences and target items to form a global graph. With the

PTG G constructed, we can leverage GNN to learn the representa-
tions of prefix sequences and target items by fully exploiting the
transition and correlation information in PTG.

GNN aggregates information from a node’s neighbors to update
its representation. Due to the lack of semantic information in ID-
only scenarios, we adopt LightGCN [11] as our backbone. This
simplified GNN allows for more efficient learning of node embed-
dings by directly leveraging the graph structure without requiring
feature transformation or nonlinear activation functions. For given
prefix sequence 𝑝 and target item 𝑖 , the update rule of LightGCN
can be formulated as:

e(𝑙+1)𝑝 =
∑︁
𝑖∈N𝑝

1√︃��N𝑝 �� |N𝑖 | e(𝑙 )𝑖
, e(𝑙+1)

𝑖
=

∑︁
𝑝∈N𝑖

1√︃
|N𝑖 |

��N𝑝 ��e(𝑙 )𝑝 ,

(5)
where 1√︃

|N𝑝 | |N𝑖 |
is the symmetrically normalized term of the graph

adjacency matrix A. N𝑝 and N𝑖 denote the one-hop neighbors of
prefix sequence 𝑠 and target item 𝑖 .

3.3.3 Enhanced Node Representation. To further enhance our
model’s representation capability and catch high-order interactions,
we stack multiple GNN layers to learn the multi-layered represen-
tation of items and prefix sequences. The final representation of
the graph-enhanced embedding is obtained by combining all the
layers’ embeddings, which can be formulated as:

E𝑖 =
𝐿∑︁
𝑙=0

𝛼𝑙 · e
(𝑙 )
𝑖

, E𝑝 =

𝐿∑︁
𝑙=0

𝛼𝑙 · e
(𝑙 )
𝑝 , (6)

where 𝛼𝑙 is the learnable weight for the 𝑙-th layer, and e(𝑙 )
𝑖

and e(𝑙 )𝑝
are the embeddings of target item 𝑖 and prefix sequence 𝑝 in the
𝑙-th layer, respectively. To avoid unnecessary complexity, we set 𝛼𝑙
uniformly as 1/(𝐿 + 1), which means each layer contributes equally
to the enhanced node representation, ensuring transition and corre-
lation relationships have a balanced contribution to representation.

We finally obtain the enhanced representations of items and pre-
fix sequences for the sequential recommendation task. The prefix
sequence embeddings get updated every epoch while the enhanced
item embeddings learn their representation following the GCN
propagation every batch. Although we do enhance the prefix se-
quence embeddings, we only use them to enrich the target item
embeddings in GNN. The prefix sequence embeddings can’t be di-
rectly used as sequential recommender input since prefix sequences
are dynamic and fail to cover unseen variant user histories. So, we
use the universal item embeddings to represent the prefix sequence
as recommendation task input.

To sum up, the usage of PTG is for enhancing the item embed-
dings by integrating the sequence information based on the correla-
tion between prefixes and targets. The prefix sequence embeddings
get updated every epoch while the enhanced item embeddings learn
their representation following the GCN propagation every batch.
However, when prefixes serve as input for the recommendation
task, we do not represent them directly with their PTG-enhanced
embeddings but with their items, using the enhanced items embed-
dings for representation.
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Table 1: Detailed statistics of experimental datasets

Statistics Beauty Sports Toys ML-1M

# Users 22,363 35,598 19,412 6,040
# Items 12,101 18,357 11,924 3,416
# Interactions 198,502 296,337 167,597 999,611
Avg. Actions/User 8.8 8.3 8.6 165.4
Avg. Actions/Item 16.4 16.1 14 292.6
Sparsity 99.93% 99.95% 99.93% 95.16%

3.4 Training & Prediction
It is worth noting that the enhanced representation incorporates
transition patterns, prefix-prefix correlations, and target-target rel-
evance. With graph-based representation enhancement, we can
insert enhanced item representation into various sequential recom-
mendation backbones to realize the next-item prediction. In this
work, we adopt the self-attention-based sequential recommenda-
tion model SASRec as our sequential recommender.

During the training stage, the prefix-target pairs from extracted
subsequences are used as the user behavior sequence and ground
truth next item respectively. As representations of user intents, the
prefix sequences from subsequences can offer more fine-grained in-
formation about user behavior patterns, which can help the model
capture the user’s intention transition better. So we augment the
training data by generating multiple training samples from a sin-
gle complete user sequence. It makes the model more capable of
generalizing better to different sequence lengths and patterns.

To capture the short and long-term dependencies in the user be-
havior sequences and model the interactions between items in
the sequences, we use the enhanced item embeddings directly
as the input for the sequential recommender, replacing the orig-
inal item embeddings in the user sequence. For the subsequence
𝑠 = [𝑖1, 𝑖2, · · · , 𝑖𝑇 ], the input for the training recommender can be
formulated as follows:

S𝑝 = [E1, E2, . . . , E𝑇−1], (7)

and ground truth target item 𝑡 is E𝑇 . We feed the enhanced embed-
dings of the prefix sequence into the recommender F𝑟𝑒𝑐 to get the
prediction representation of the next item 𝑖 as follows:

E𝑖 = F𝑟𝑒𝑐 (S𝑝 ) . (8)

The recommender will output the final prediction representation
E𝑖 through forward propagation. We predict the next item by cal-
culating the probability of each item in the item set I with E𝑖 :

p̂ = Softmax(E𝑖 · E𝑖 |𝑖 ∈ I) (9)

where p̂ is the predicted probability distribution over all items in
the item set I, E𝑖 is the graph-based enhanced embedding of item
𝑖 , and (·) is dot-product operation. By ordering, we can obtain the
top-𝑁 suggested outcomes for predicting the subsequent item.

We use the cross-entropy loss function to compute the optimized
objective for the main supervised recommendation task. The final
loss function for the recommendation task L is given by:

L𝑟𝑒𝑐 = −
∑︁
(𝑝,𝑡 ) ∈D

log p̂(𝑡) . (10)

4 EXPERIMENTS
In this section, we conduct extensive experiments attempting to
answer the following research questions (RQs):
• RQ1: How does PTSR perform compared with the state-of-the-
art methods?
• RQ2: Does PTSR benefit from the core modules prefix sequence,
PTG, and GNN?
• RQ3: How do the hyperparameters, the number of GNN layers,
the length of prefix sequences, and the connection numbers in
PTG impact the performance of PTSR?

4.1 Experimental Setting
4.1.1 Datasets. Following previous works [4, 9, 16, 19, 33], we
conduct experiments on four public real-world benchmarks using
the same data preprocessing methods.
• Amazon [25]: A series of datasets that collect user reviews on
products from Amazon.com. The dataset can be divided into
subsets according to product categories with relatively short
sequences. In this work, we pick Sports, Beauty, and Toys as
three different experimental datasets.
• MovieLens [7]: A widely used recommendation system dataset
containing movie user ratings. We use the MovieLens-1M dataset,
a subset of the MovieLens dataset with 1 million ratings.
We convert each dataset into an implicit format by treating

each rating or review as indicative of a user-item interaction. Fol-
lowing the practices outlined by [12, 16, 37], sequences and items
with fewer than five interactions were excluded from the analysis.
The statistical properties of the datasets are summarized in Table
1, which illustrates the variation in size and density among the
datasets. This diversity enables a comprehensive evaluation of the
proposed models across different contexts.

4.1.2 Evaluation Metrics. To evaluate the performance of each
method, we use the widely accepted leave-one-out evaluation task
for each sequence. This approach involves reserving the last item
in the sequence for testing purposes, the second-to-last item for val-
idation, and the remaining items for training. Moreover, we adopt a
full-sort evaluation method that predicts the next item by ranking
all the items in the item set based on the predicted probability dis-
tribution for a fair comparison. We employ two standard evaluation
metrics to assess the ranked list: Hit Ratio (HR) and Normalized
Discounted Cumulative Gain (NDCG). We report HR and NDCG
with Top-𝑘 recommendation, where 𝑘 = 5, 10, 20. They yield high
values when the ground truth item appears higher on the Top-𝑘 list.
Given that only one ground truth item exists for each user, HR@k
is effectively the same as Recall@k.

4.1.3 Baseline Models. To demonstrate the effectiveness of our
approach, we compare PTSRwith the state-of-the-art baseline meth-
ods as follows:

Non-Sequential Models.

• BPR [31] is the first to employ Bayesian Personalized Ranking
(BPR) loss to optimize the matrix factorization model as a repre-
sentative of non-sequential recommendation,

Conventional Sequential Models.

 

244



PTSR: Prefix-Target Graph-based Sequential Recommendation CIKM ’24, October 21–25, 2024, Boise, ID, USA

Table 2: Performance comparisons of different methods. The results of the best baseline are underlined in each row and bolod
values denote the best results. The last column is the relative improvements compared with the best baseline results.

Dataset Metric BPR GRU4Rec Caser SASRec BERT4Rec S3-RecMIP CL4SRec CoSeRec DuoRec DSSRec SINE ICLRec IOCRec ICSRec PTSR impro.

Sports

HR@5 0.0123 0.0162 0.0154 0.0214 0.0217 0.0121 0.0231 0.0290 0.0312 0.0209 0.0240 0.0290 0.0293 0.0403 0.0432 6.16%

HR@10 0.0215 0.0258 0.0261 0.0333 0.0359 0.0205 0.0369 0.0439 0.0466 0.0328 0.0389 0.0437 0.0452 0.0565 0.0600 8.23%

HR@20 0.0369 0.0421 0.0399 0.0500 0.0604 0.0344 0.0557 0.0636 0.0696 0.0499 0.0610 0.0646 0.0684 0.0794 0.0844 9.48%

NDCG@5 0.0076 0.0103 0.0114 0.0144 0.0143 0.0084 0.0146 0.0196 0.0195 0.0139 0.0152 0.0191 0.0169 0.0283 0.0297 4.45%

NDCG@10 0.0105 0.0142 0.0135 0.0177 0.0190 0.0111 0.0191 0.0244 0.0244 0.0178 0.0199 0.0238 0.0220 0.0335 0.0351 5.70%

NDCG@20 0.0144 0.0186 0.0178 0.0218 0.0251 0.0146 0.0238 0.0293 0.0302 0.0221 0.0255 0.0291 0.0279 0.0393 0.0413 6.79%

Beauty

HR@5 0.0178 0.0180 0.0251 0.0377 0.0360 0.0189 0.0401 0.0504 0.0561 0.0408 0.0354 0.0500 0.0511 0.0698 0.0741 7.20%

HR@10 0.0296 0.0284 0.0342 0.0624 0.0601 0.0307 0.0642 0.0725 0.0851 0.0616 0.0612 0.0744 0.0774 0.0960 0.1039 6.19%

HR@20 0.0474 0.0478 0.0643 0.0894 0.0984 0.0487 0.0974 0.1034 0.1228 0.0894 0.0963 0.1058 0.1146 0.1298 0.1421 6.30%

NDCG@5 0.0109 0.0116 0.0145 0.0241 0.0216 0.0115 0.0268 0.0339 0.0348 0.0263 0.0213 0.0326 0.0311 0.0494 0.0516 4.95%

NDCG@10 0.0147 0.0150 0.0226 0.0342 0.0300 0.0153 0.0345 0.0410 0.0441 0.0329 0.0296 0.0403 0.0396 0.0579 0.0612 4.78%

NDCG@20 0.0192 0.0186 0.0298 0.0386 0.0391 0.0198 0.0428 0.0487 0.0536 0.0399 0.0384 0.0483 0.0490 0.0663 0.0708 5.09%

Toys

HR@5 0.0122 0.0121 0.0205 0.0429 0.0371 0.0456 0.0503 0.0533 0.0655 0.0447 0.0385 0.0597 0.0542 0.0788 0.0820 4.06%

HR@10 0.0197 0.0184 0.0333 0.0652 0.0524 0.0689 0.0736 0.0755 0.0959 0.0671 0.0631 0.0834 0.0804 0.1055 0.1096 3.89%

HR@20 0.0327 0.0290 0.0542 0.0957 0.0760 0.0940 0.0990 0.1037 0.1293 0.0942 0.0957 0.1139 0.1132 0.1368 0.1452 6.14%

NDCG@5 0.0076 0.0077 0.0125 0.0245 0.0259 0.0314 0.0264 0.0370 0.0392 0.0297 0.0225 0.0404 0.0297 0.0571 0.0592 3.68%

NDCG@10 0.0100 0.0097 0.0168 0.0320 0.0309 0.0388 0.0339 0.0442 0.0490 0.0369 0.0304 0.0480 0.0381 0.0657 0.0681 3.65%

NDCG@20 0.0132 0.0123 0.0221 0.0397 0.0368 0.0452 0.0404 0.0513 0.0574 0.0437 0.0386 0.0557 0.0464 0.0736 0.0771 4.76%

ML-1M

HR@5 0.0247 0.0806 0.0912 0.1078 0.1308 0.1078 0.1142 0.1128 0.2098 0.1371 0.0990 0.1382 0.1796 0.2445 0.2515 2.86%

HR@10 0.0412 0.1344 0.1442 0.1810 0.2219 0.1952 0.1815 0.1861 0.3078 0.2243 0.1694 0.2273 0.2689 0.3368 0.3483 3.41%

HR@20 0.0750 0.2081 0.2228 0.2745 0.3354 0.3114 0.2818 0.2950 0.4098 0.3275 0.2705 0.3368 0.3831 0.4518 0.4579 1.35%

NDCG@5 0.0159 0.0475 0.0565 0.0681 0.0804 0.0616 0.0705 0.0692 0.1433 0.0898 0.0586 0.0889 0.1201 0.1710 0.1742 1.87%

NDCG@10 0.0212 0.0649 0.0734 0.0948 0.1097 0.0917 0.0920 0.0915 0.1749 0.1179 0.0812 0.1175 0.1487 0.2007 0.2054 2.34%

NDCG@20 0.0297 0.0834 0.0931 0.1156 0.1384 0.1204 0.1170 0.1247 0.2007 0.1440 0.1066 0.1450 0.1775 0.2297 0.2330 1.44%

• GRU4Rec [14] is the pioneering work of deep learning, intro-
ducing a Gated Recurrent Unit (GRU) to model sequences and
first leveraging RNN for SR.
• Caser [36] first introduces CNN to SR, which leverages both
horizontal and vertical convolution to model the sequence.
• SASRec [16], introducing the Transformer-based framework,
first utilizes the attention mechanism to model sequences, which
greatly improves the performance of SR.
• BERT4Rec [33] first introduces BERT [5] to model the sequence,
which employs a bidirectional attentive encoder and leverages
the Mask Item Predict (MIP) task to capture the potential rela-
tionships between items and sequences.

Item-aware Sequential Models.

• S3-RecMIP [46] proposes four types of learning objectives and ap-
plies MIP to realize maximummutual information. Since we have
no attribute information, only the MIP task, called S3-RecMIP, is
used for training.
• CL4SRec [43] combines a multi-task contrastive learning model
with a multi-head self-attention mechanism, and three stochastic
enhancement operators are proposed for generating positive and
negative samples in contrastive learning.
• CoSeRec [23] is a contrastive learning framework based on the
Transformer encoder that proposes two informative robust data
enhancement operators based on CL4SRec.

Intent-aware Sequential Models.

• DuoRec [29] utilizes the randomness of dropout in the model to
form different views for unsupervised contrastive learning and
uses contrastive learning on sequences with the same next item.
• DSSRec [24] proposes a seq2seq model and introduces a variable
representing user intent.
• SINE [34] designs a concept pool and retrieves user intent by
behavior sequence in the concept pool.
• ICLRec [3] builds the intent prototype by clustering the user
historical behavior sequence representations.
• IOCRec [20] disentangles the latent intents from the user behav-
ior sequence and uses the intent to guide the item representation
learning.
• ICSRec [28] uses subsequences as training data and applies con-
trastive learning between similar subsequences to enhance the
representation.

4.1.4 Implementation Details. We adopt the original code with
the original settings for the baselines to reproduce the results on
four benchmarks. We employ the Adam [17] optimizer with the
batch size set to 256. The model has 2 Transformer layers, 4 GNN
layers, and a 64-bit latent embedding size. The number of self-
attention blocks and attention heads is set to 2. We set 𝑑 as 64 and
𝑇 as 50. The PTG augmentation is performed once per batch. While
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Table 3: The HR@5 and NDCG@5 performances achieved by
ICSRec variants and SASRec on four datasets.

Model

Dataset

Sports Beauty Toys

HR@5 NDCG@5 HR@5 NDCG@5 HR@5 NDCG@5

(A) PTSR 0.0432 0.0297 0.0741 0.0516 0.0820 0.0592

(B) w/o GCN 0.0408 0.0282 0.070 0.0508 0.0774 0.0564

(C) w/o Subseq 0.0268 0.0188 0.0487 0.0339 0.0511 0.0372

(D) SASRec 0.0214 0.0144 0.0377 0.0241 0.0429 0.0245

in the testing stage, we use original complete user sequences to
predict the next item instead of subsequences.

4.2 Overall Performance (RQ1)
We compare the performance of all baselines with the PTSR. Table 2
shows the experimental results of all the compared models on four
datasets. Accordingly, we have the following observations,

• Benefiting from introducing prefix sequences and Prefix-Target
Graph, PTSR significantly outperforms other methods on all met-
rics across the different datasets. Specifically, PTSR improves the
best baselines by 9.48%, 6.03%, 6.14%, and 1.35% regarding HR@20
on Beauty, Sports, Toys, and ML-1M, respectively. Looking at
all six key metrics, the model improves by an average of 6.80%,
5.75%, 4.36%, and 2.21% across the four datasets compared with
the SOTA baseline ICSRec.
• The non-sequential result, BPR, can hardly achieve a compara-
ble result with other sequential methods since such a shallow
method lacks the representation learning capability of users’ his-
torical behaviors. The first representative deep learningmethod is
GRU4Rec, which can consistently outperform the non-sequential
BPR. It can be concluded that the incorporation of sequential
information can improve performance.
• Attention-based models, e.g., SASRec and BERT4Rec, can per-
form better than CNN and RNN-based models since the attention
mechanism makes the model pay more attention to the items
that have a significant impact on the current target item predic-
tion. Based on attention models, CL4SRec and CoSeRec introduce
discriminative representations by contrastive learning from an
item-aware perspective, achieving significant progress in perfor-
mance.
• Intent-aware methods that further mine user intents implied by
user sequences attain the top results in our experiments. They
are designed to capture user intents among item transitions,
which can more accurately reflect users’ real preferences com-
pared to item-aware methods that only consider item-level tran-
sition relationships. Similarly, as an intent-aware method, PTSR
leverages low-order connections like prefix-target transitions
while simultaneously capturing high-order relationships such
as prefix-prefix and target-target correlations, thereby achieving
state-of-the-art performance.

4.3 Ablation Study (RQ2)
We perform ablation studies developing three variants, with each
one excluding a specific key component, to delve deeper into the
design of PTSR.
• w/o GNN removes the GNN graph learning that enhances the
item representation by incorporating prefix sequences.
• w/o Subseq removes the usage of prefix sequences during the
training stage, implying that the original user sequences are used.
• w/o both removes the entire PTSR. This variant functions equiv-
alently to SASRec.
The results of the ablation study are presented in Table 3. In

the ablation study, we can make the following observations: 1)
Each of these critical components contributes substantially to the
enhancement of the model’s recommendation performance; 2) After
using prefix sequences as training, we can significantly improve
the model’s performance thanks to the introduction of the prefix-
sequence intent signal; 3)We obtained the SOTAmodel after further
using the GNN to aggregate interests around items.

4.4 Further Discussion (RQ3)
We conduct further discussions to investigate some details of the
PTSR.

4.4.1 Impact of Graph Layers. We modify the graph layer num-
ber of PTSR from 0 to 6, and conduct experiments on the three
datasets to investigate the impact of the layer number on perfor-
mance. The results are shown in Figure 3. We can observe that
when the layer number is 0, that is, when the GNN module is re-
moved, the model’s performance degrades significantly. Once the
Prefix-Target GNN layer is introduced, the model’s performance
increases significantly, even if only one layer is added. According to
a rough comparison, the performance of GNN-based models with
one layer is often the lowest, and model performance grows slightly
with the number of layers. However, the layer number generally
doesn’t significantly impact the model’s performance. This may be
because the model can capture more higher-order correlations as
the layer number increases. However, it may overfit the training
data if too many layers are used, leading to decreased performance.

4.4.2 Impact of Prefix Length. We experiment with various
lengths of prefix sequences to investigate the impact of the prefix
sequence length. The setups of prefix sequence lengths and the
results are shown in Figure 4. We can observe that the model’s per-
formance increases with the prefix sequence length and reaches its
best when the prefix sequence length is 50. Short prefix sequences
may contain too much noise, as the receptive field can’t cover the
whole user sequence. For example, when the length is 1, the model
only captures the behavior pattern based on the latest behavior.
Short prefix sequences have many false clicks and short-term fluc-
tuations in user behavior, which are inconsistent with actual short-
term intentions, and the model cannot capture long-term patterns
of user behavior, thereby affecting the model’s performance. On the
other hand, long prefix sequences with the loss of some fine-grained
information lose the advantage over short-term patterns.

4.4.3 Impact of Prefix-Target Pair Count. We conduct experi-
ments with different numbers of prefix sequences and target item
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Figure 3: The impacts of different numbers of GNN Layers.
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Figure 4: Impact of using different subsequence lengths in sequential recommendation training and PTG construction.
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Figure 5: Impact of the number of observed prefixes in PTG. The x-axis represents the proportion of unmasked edges in PTG.

connections in the PTG. Specifically, random masks are applied to
edges in the PTG to simulate that fewer sequences are observed.
Results in Figure 5 show that the performance increases with the
number of prefix sequences. It indicates that the more prefix se-
quences we have, the more information we can leverage to learn the
transition and correlation relationships between items and prefix
sequences. The PTSR is capable of fully utilizing this information to
better capture the user’s intention transition. Meanwhile, the per-
formance reaches a plateau when the number of prefix sequences
is sufficient, indicating that the PTSR has a strong generalization
ability and can achieve good performance with a moderate number
of prefix sequences.

5 CONCLUSION
In this paper, we tried to address the limitations of focusing on
item-level transitions without fully exploring the user’s intention
transitions encapsulated within prefix sequences. To this end, we
introduced a novel model called PTSR. It’s designed to capture the
transition and correlation relationships between targets and pre-
fixes. PTSR segments user histories into multiple prefix sequences,

each paired with a target item, thereby creating short interest re-
gions reflecting user behavior patterns. It uses a Prefix-Target graph
connecting nodes of target items with their prefix sequences based
on their natural transition relationships. By applying GNNmessage
propagation to this graph, it aggregates information from the neigh-
bors of each node, enriching the representations of both items and
prefix sequences. Extensive experiments demonstrated the superi-
ority of the PTSR, which highlights its effectiveness in capturing
the complex dynamics of user intention transitions and high-order
relations. Future work could explore further enhancements to the
graph construction process, incorporating additional contextual
information or user-specific factors to further improve recommen-
dation accuracy. Additionally, integrating more sophisticated GNN
architectures or sequential recommenders could be investigated to
push the boundaries of recommendation system performance.

6 ACKNOWLEDGMENTS
This work is supported by the National Natural Science Foundation
of China (62172226) and the 2021 Jiangsu Shuangchuang (Mass Inno-
vation and Entrepreneurship) Talent Program (JSSCBS20210200).

 

247



CIKM ’24, October 21–25, 2024, Boise, ID, USA Jiayu Chen, Xiaoyu Du, Yonghua Pan, and Jinhui Tang

REFERENCES
[1] Jianxin Chang, Chen Gao, Yu Zheng, Yiqun Hui, Yanan Niu, Yang Song, Depeng

Jin, and Yong Li. 2021. Sequential recommendation with graph neural networks.
In Proceedings of the 44th international ACM SIGIR conference on research and
development in information retrieval. 378–387.

[2] Wanyu Chen, Pengjie Ren, Fei Cai, Fei Sun, andMaarten de Rijke. 2020. Improving
End-to-End Sequential Recommendations with Intent-aware Diversification. In
CIKM. 175–184.

[3] Yongjun Chen, Zhiwei Liu, Jia Li, Julian J. McAuley, and Caiming Xiong. 2022.
Intent Contrastive Learning for Sequential Recommendation. InWWW. 2172–
2182.

[4] Sung Min Cho, Eunhyeok Park, and Sungjoo Yoo. 2020. MEANTIME: Mixture of
attention mechanisms with multi-temporal embeddings for sequential recom-
mendation. In Proceedings of the 14th ACM Conference on recommender systems.
515–520.

[5] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding. In
NAACL-HLT. 4171–4186.

[6] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation
learning on large graphs. Advances in neural information processing systems 30
(2017).

[7] F Maxwell Harper and Joseph A Konstan. 2015. The movielens datasets: History
and context. Acm transactions on interactive intelligent systems (tiis) 5, 4 (2015),
1–19.

[8] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. 2020. Mo-
mentum contrast for unsupervised visual representation learning. In Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition. 9729–9738.

[9] Ruining He, Wang-Cheng Kang, and Julian McAuley. 2017. Translation-based
recommendation. In Proceedings of the eleventh ACM conference on recommender
systems. 161–169.

[10] Ruining He and Julian McAuley. 2016. Fusing similarity models with markov
chains for sparse sequential recommendation. In 2016 IEEE 16th international
conference on data mining (ICDM). IEEE, 191–200.

[11] Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, Yongdong Zhang, and Meng
Wang. 2020. Lightgcn: Simplifying and powering graph convolution network for
recommendation. In Proceedings of the 43rd International ACM SIGIR conference
on research and development in Information Retrieval. 639–648.

[12] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng
Chua. 2017. Neural collaborative filtering. In Proceedings of the 26th international
conference on world wide web. 173–182.

[13] Balázs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos Tikk.
2015. Session-based recommendations with recurrent neural networks. arXiv
preprint arXiv:1511.06939 (2015).

[14] Balázs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos Tikk.
2016. Session-based Recommendations with Recurrent Neural Networks. In
ICLR.

[15] Hengchang Hu, Wei Guo, Yong Liu, and Min-Yen Kan. 2023. Adaptive multi-
modalities fusion in sequential recommendation systems. In Proceedings of the
32nd ACM International Conference on Information and Knowledge Management.
843–853.

[16] Wang-Cheng Kang and Julian J. McAuley. 2018. Self-Attentive Sequential Rec-
ommendation. In ICDM. 197–206.

[17] Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Opti-
mization. In ICLR.

[18] Thomas N Kipf and MaxWelling. 2016. Semi-supervised classification with graph
convolutional networks. arXiv preprint arXiv:1609.02907 (2016).

[19] Jiacheng Li, Yujie Wang, and Julian McAuley. 2020. Time interval aware self-
attention for sequential recommendation. In Proceedings of the 13th international
conference on web search and data mining. 322–330.

[20] Xuewei Li, Aitong Sun, Mankun Zhao, Jian Yu, Kun Zhu, Di Jin, Mei Yu, and
Ruiguo Yu. 2023. Multi-Intention Oriented Contrastive Learning for Sequential
Recommendation. InWSDM. 411–419.

[21] Yang Li, Tong Chen, Peng-Fei Zhang, and Hongzhi Yin. 2021. Lightweight Self-
Attentive Sequential Recommendation. In CIKM. 967–977.

[22] Sijia Liu, Jiahao Liu, Hansu Gu, Dongsheng Li, Tun Lu, Peng Zhang, and Ning
Gu. 2023. Autoseqrec: Autoencoder for efficient sequential recommendation.
In Proceedings of the 32nd ACM International Conference on Information and
Knowledge Management. 1493–1502.

[23] Zhiwei Liu, Yongjun Chen, Jia Li, Philip S Yu, Julian McAuley, and Caiming
Xiong. 2021. Contrastive self-supervised sequential recommendation with robust

augmentation. arXiv preprint arXiv:2108.06479 (2021).
[24] Jianxin Ma, Chang Zhou, Hongxia Yang, Peng Cui, Xin Wang, and Wenwu Zhu.

2020. Disentangled Self-Supervision in Sequential Recommenders. In KDD. ACM,
483–491.

[25] Julian J. McAuley, Christopher Targett, Qinfeng Shi, and Anton van den Hengel.
2015. Image-Based Recommendations on Styles and Substitutes. In SIGIR. 43–52.

[26] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. 2018. Representation learning
with contrastive predictive coding. arXiv preprint arXiv:1807.03748 (2018).

[27] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. 1998. The
pagerank citation ranking: Bring order to the web. In Proc. of the 7th International
World Wide Web Conf.

[28] Xiuyuan Qin, Huanhuan Yuan, Pengpeng Zhao, Guanfeng Liu, Fuzhen Zhuang,
and Victor S Sheng. 2024. Intent Contrastive Learning with Cross Subsequences
for Sequential Recommendation. In Proceedings of the 17th ACM International
Conference on Web Search and Data Mining. 548–556.

[29] Ruihong Qiu, Zi Huang, Hongzhi Yin, and Zijian Wang. 2022. Contrastive
learning for representation degeneration problem in sequential recommendation.
In Proceedings of the fifteenth ACM international conference on web search and
data mining. 813–823.

[30] Massimo Quadrana, Paolo Cremonesi, and Dietmar Jannach. 2018. Sequence-
aware recommender systems. ACM computing surveys (CSUR) 51, 4 (2018), 1–36.

[31] Steffen Rendle, Christoph Freudenthaler, ZenoGantner, and Lars Schmidt-Thieme.
2009. BPR: Bayesian Personalized Ranking from Implicit Feedback. In UAI. 452–
461.

[32] Steffen Rendle, Christoph Freudenthaler, and Lars Schmidt-Thieme. 2010. Factor-
izing personalizedmarkov chains for next-basket recommendation. In Proceedings
of the 19th international conference on World wide web. 811–820.

[33] Fei Sun, Jun Liu, Jian Wu, Changhua Pei, Xiao Lin, Wenwu Ou, and Peng Jiang.
2019. BERT4Rec: Sequential Recommendation with Bidirectional Encoder Repre-
sentations from Transformer. In CIKM. 1441–1450.

[34] Qiaoyu Tan, Jianwei Zhang, Jiangchao Yao, Ninghao Liu, Jingren Zhou, Hongxia
Yang, and Xia Hu. 2021. Sparse-Interest Network for Sequential Recommendation.
In WSDM. 598–606.

[35] Yong Kiam Tan, Xinxing Xu, and Yong Liu. 2016. Improved recurrent neural
networks for session-based recommendations. In DLRS@RecSys. 17–22.

[36] Jiaxi Tang and Ke Wang. 2018. Personalized Top-N Sequential Recommendation
via Convolutional Sequence Embedding. InWSDM. 565–573.

[37] Jiaxi Tang and Ke Wang. 2018. Personalized top-n sequential recommenda-
tion via convolutional sequence embedding. In Proceedings of the eleventh ACM
international conference on web search and data mining. 565–573.

[38] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing systems 30 (2017).

[39] Xiang Wang, Xiangnan He, Meng Wang, Fuli Feng, and Tat-Seng Chua. 2019.
Neural graph collaborative filtering. In Proceedings of the 42nd international ACM
SIGIR conference on Research and development in Information Retrieval. 165–174.

[40] Ziyang Wang, Wei Wei, Gao Cong, Xiao-Li Li, Xian-Ling Mao, and Minghui
Qiu. 2020. Global context enhanced graph neural networks for session-based
recommendation. In Proceedings of the 43rd international ACM SIGIR conference
on research and development in information retrieval. 169–178.

[41] Liwei Wu, Shuqing Li, Cho-Jui Hsieh, and James Sharpnack. 2020. SSE-PT:
Sequential recommendation via personalized transformer. In Proceedings of the
14th ACM conference on recommender systems. 328–337.

[42] ShuWu, Yuyuan Tang, Yanqiao Zhu, Liang Wang, Xing Xie, and Tieniu Tan. 2019.
Session-based recommendation with graph neural networks. In Proceedings of
the AAAI conference on artificial intelligence, Vol. 33. 346–353.

[43] Xu Xie, Fei Sun, Zhaoyang Liu, Shiwen Wu, Jinyang Gao, Jiandong Zhang, Bolin
Ding, and Bin Cui. 2022. Contrastive Learning for Sequential Recommendation.
In ICDE. 1259–1273.

[44] Zhao Yan, Xinguang Xiang, and ZeChao Li. 2022. Item correlation modeling in
interaction sequence for graph convolutional session recommendation. SCIENTIA
SINICA Informationis 52, 6 (2022), 1069–1082.

[45] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton,
and Jure Leskovec. 2018. Graph convolutional neural networks for web-scale
recommender systems. In Proceedings of the 24th ACM SIGKDD international
conference on knowledge discovery & data mining. 974–983.

[46] Kun Zhou, Hui Wang, Wayne Xin Zhao, Yutao Zhu, Sirui Wang, Fuzheng Zhang,
Zhongyuan Wang, and Ji-Rong Wen. 2020. S3-rec: Self-supervised learning for
sequential recommendation with mutual information maximization. In CIKM.
1893–1902.

 

248


	Abstract
	1 Introduction
	2 Related Work
	2.1 Sequential Recommendation
	2.2 Graph-based Recommendation

	3 Method
	3.1 Problem Formulation
	3.2 Prefix-Target Graph Construction
	3.3 Graph-based Representation Enhancement
	3.4 Training & Prediction

	4 Experiments
	4.1 Experimental Setting
	4.2 Overall Performance (RQ1)
	4.3 Ablation Study (RQ2)
	4.4 Further Discussion (RQ3)

	5 Conclusion
	6 Acknowledgments 
	References



